

The Top Quark Discovery: From a CDF Viewpoint

Kirsten Tollefson Michigan State University

Hadron Collider Physics Summer School August 9-18th, 2006

My Background

- Graduate student with University of Rochester from 1992-97.
- Worked in b-tagging and L+jet groups, thesis result was Run I L+jets top mass
- Lots of work done by lots of people, these are just my recollections

A Simplified History of the Quark Model

- 1964 Gell-Mann, Zweig idea for 3 quarks up, down, strange (u, d, s)
- 1970 Glashow, Iliopoulos and Maiani 4 quarks - up, down, strange, charm (u, d, s, c)
- 1973 Kobayashi and Maskawa add 2 quarks top and bottom (t, b) to explain CP violation
- 1974 Ting, Richter discover charm
- 1977 Lederman (Fermilab) discovers bottom
- B weak isospin = -1/2, need +1/2 partner

There must be a Top!

Top Mass Predictions and Discovery

- Several top mass predictions in late 70s
 - Predict 5 < M_{top} < 65 GeV</p>

Rule of 3

S	С	b	t
0.5	1.5	4.5	15

Quark

Mass (GeV)

- Jan. 1983 UA1 & UA1 discover W boson
- May 1983 UA1 discovers Z boson
- June-July 1984 Rubbia discovers Top!
 - Articles (Nature, NY Times) and press release
 - Mass peak between 30-50 GeV

(See J. Womersley's talk on Wednesday for more details)

Meanwhile back at Fermilab

- 1977 First discussions of colliding p-pbar beams at Fermilab and a detector
- 1981 CDF Design Report general purpose detector with magnetic field
- Oct. '85 CDF sees first p-pbar collisions collect total 23 events
- Run 0 June '88 May '89, collect < 5 pb⁻¹
 - Set limits on M_{top} > 91 GeV using Dilepton and L+jets channels (first use of SLT tagging)
 - Mass too high for CERN, Fermilab only game in town

A Quick Review on Top Production and Decay

Top pair production via the strong interaction:

90% $q\overline{q}$ 10% gg at Tevatron \sqrt{s} = 1.8 TeV 85% $q\overline{q}$ 15% gg at Tevatron \sqrt{s} = 1.96 TeV 10% $q\overline{q}$ 90% gg at LHC \sqrt{s} = 14 TeV

- Top decays t->Wb ~100%
- Top lifetime ~ 4x10⁻²⁵ sec
 - Doesn't hadronize
- Decay of W identifies channel
 - Dilepton, L+jets, All-hadronic

(See Shapiro and Womersley talks for more on top decays)

Dilepton

- Few events but pure
- final state: lv lv bb

Lepton + Jets

- More events, less pure
 - Add b-tags
- final state: Iv qq bb
- All-Hadronic
 - Lots of events, huge QCD bkg
 - final state: qq qq bb
 - Not used in discovery

Looking for Top in Run 0

- Believe M_{Top} < M_W
 - Decay mode would be
 W -> tb with t -> blv
- Search strategies
 - Dilepton channel
 - ee, eμ, and μμ
 - L+jets channel
 - Added SLT tags
- Set limit M_{Top} > 91 GeV
- CDF had no silicon yet!

- Soft Lepton Tagging
- Identify semileptonicB decay

$$b \rightarrow \ell$$
, $b \rightarrow c \rightarrow \ell$

■ ε(SLT) ~ 20%

- Silicon used at fixed target to measure particle lifetimes and tag particles
- Not easy to sell idea to CDF
 - Hadron environment too messy to do precision tracking and heavy flavor physics (b and c)
 - No obvious physics case for device
 - Top discovery not a factor, didn't consider b-tagging
 - Many technical challenges with construction and readout in collider environment
- Dedication by Pisa (especially Aldo Menzione) and LBL groups got detector built

- June '92 May '93
- CDF now has SVX and muon upgrades
- D0 is taking data
- Developing strategies for discovering top
 - Counting experiments
 - Kinematic analyses

b-tagging using Secondary Vertices

- Use new SVX and b lifetime
 - cτ ~ 450mm
 - b hadrons travel L_{xy} ~ 3 mm before decay
- Run 1a had 3 SVX taggers
 - Jetvtx ≥2 tracks form secondary vertex with |Lxy|/σ_{Lxy}≥3
 - Jet Probability use track impact parameter, probability of track consistent with primary vertex
 - d-φ Uses impact parameter, d, and azimuthal angle, φ, of tracks

- See Dominguez talk on tracking and b-tagging
- Secondary VerteX Tagging
- ϵ (SVX) ~ 50%

Silicon Vertex Detectors Work (in a hadron collider)!

The Golden Event

- DPF event
 - Oct. 22, 1992
 - eμ + 2 jet event
 - 1 jet tagged by both SLT and SVX
 - Decide not to declare discovery on 1 event
 - D0 similar experience
- Push for top is on!

The "Evidence" Paper

- July 1993 CDF collaboration meeting
 - Seeing excess in all channels
 - Decide to write 4 PRLs
- Oct. '93 CDF collab meeting
 - Reject PRLs and opt for giant PRD
- Jan. '94 CDF collab meeting
 - Many questions and concerns (next slide)
- April 26, 1994 Submit "Evidence for Top Quark Production" - PRD 50, p.2966-3026

Comments on "Evidence"

- 9 months of endless meetings answering questions while attempting to keep results quiet
- Some of the concerns raised:
 - Choice of official SVX b-tagger
 - Tuning on data
 - Method 1 vs. Method 2 background
 - Overestimate from data or trust MC
 - Role of kinematic analyses
 - Supporting evidence but not in significance
 - Calculate significance
 - Events or tags, weight of double tags

Results for Evidence Paper

Channel:	SVX	SLT	Dilepton
Expected Bkg.	2.3±0.3	3.1±0.3	0.56±0.25
Observed Events	6	7	2

- Combining all channels with 19 pb⁻¹
- Prob bkg fluctuate up to observed = 0.26% (2.8σ)

(See Lyons talk on stat.)

Run Ib and Observation

- Run Ib Feb. '94 Dec. '95
 - New rad-hard silicon SVX'
 - Optimized SVX b-tagger Secvtx
- Jan '95 CDF collaboration meeting
 - See significant excess in all channels
 - Slight changes to Evidence analyses
 - One optimized SVX b-tagger Secvtx
 - Use Method 2 background (smaller # of bkg events)
- March '95 D0 and CDF submit PRL's

Top Discovery

Channel	SVX	SLT	Dilepton
Observed	27 tags	23 tags	6 events
Exp. bkg	6.7±2.1	15.4±2.0	1.3±0.3
Probability	2x10 ⁻⁵	6x10 ⁻²	3x10 ⁻³

- Using 67 pb-1 (includes Evidence data)
 combined Prob = 1x10⁻⁶ (4.8σ)
- If include mass distribution Prob = 3.7×10^{-7} (5.0 σ)

Top Mass vs. Year

Yesterday's sensation is today's calibration and tomorrow's background.

- Feynman

- Calibration sample
 - Just like we used Ws, Zs
 - Jet Energy Scale
 - B-tagging
- Background
 - Higgs

Books on HEP Discoveries

- Nobel Dreams by Gary Taubes
 - Discovery of the W,Z bosons and Carlo Rubbia's group
- The Evidence for the Top Quark by Kent Staley
 - Philosophy discussion of discovery in science but most of the book looks at CDF's process for the Evidence and Observation papers